Подраздел: Теплофизические свойства веществ

Регистрационный код публикации: 2tp-b11v Примечание: Публикация является дополненным вариантом статьи, опубликованной в книге "Материалы X Российской конференции по теплофизическим свойствам веществ". Казань: Бутлеровские сообщения. 2002. С.49-53. Поступила в редакцию 10 ноября 2002 г. УДК 536.42

НЕКОНГРУЭНТНОЕ ФАЗОВОЕ РАВНОВЕСИЕ В ВЫСОКОТЕМПЕРАТУРНЫХ ПРОДУКТАХ НАГРЕВА ДИОКСИДА УРАНА

© Иосилевский Игорь Львович, $^{1+}$ Грязнов В.К., 2 Семенов Александр Моисеевич, 3 Якуб Е.С., 4 Фортов Владимир Евгеньевич, 2* С. Ronchi 5 и G.J. Hyland 6

1 Московский физико-технический институт (ГУ). Институтский пер., 9. г. Долгопрудный. Московской обл. Россия 141700. 2 Институт проблем химической физики РАН. Институтский просп., 14. Московская область. Ногинский р-н. г. Черноголовка 142432. Россия.

³ Московский энергетический институт. Ул. Красноказарменная, 14. Москва 111250. Россия. 4 Одесский государственный медицинский университет. Одесса. Украина. ⁵ European Commission. JRC. Institute for Transuranium Elements. Karlsruhe. Germany. ⁶ University of Warwick. Coventry. United Kingdom.

*Ведущий направление; *Поддерживающий переписку

Ключевые слова: неконгруэнтное фазовое равновесие, диоксид урана, теоретическая модель, параметры смеси, алгоритм расчета.

Резюме

На основе единого теоретического представления («химической модели плазмы») построена модель неконгруэнтного фазового равновесия (испарения) в высокотемпературных продуктах нагрева диоксида урана, как в многокомпонентной, частично ионизованной, сильно взаимодействующей смеси атомов, молекул и атомных и молекулярных ионов. На основе теоретической модели создан эффективный численный алгоритм, реализованный в рамках универсального машинного кода «SAHA-IV», позволяющий находить параметры смеси в условиях одновременного химического, ионизационного и фазового равновесия. Выбранный подход позволил впервые корректно воспроизвести общую структуру фазовой границы в продуктах нагрева диоксида урана, по многим признакам радикально отличающуюся от аналогичной структуры фазовой границы испарения «обычных» веществ. Полученные результаты помимо общефизического интереса имеют важное прикладное значение в свете проблемы безопасности ядерной энергетики.