Полная исследовательская публикация

Регистрационный код публикации: 14-38-5-103

Публикация доступна для обсуждения в рамках функционирования постоянно действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/ Поступила в редакцию 18 июля 2014 г. УДК 544.42+577.112,4+577.114.3.

Кинетический анализ ингибирования глутатионом процесса неферментативного гликозилирования in vitro генноинженерного инсулина человека

© Булатов¹ Назар Константинович, Саватеева¹⁺ Екатерина Андреевна, Емельянов¹ Виктор Владимирович, Максимова¹ Надежда Евгеньевна, Мочульская¹ Наталия Николаевна и Черешнев²* Валерий Александрович

 1 Химико-технологический институт. Уральский федеральный университет им. Первого президента России Б.Н. Ельиина, Ул. Мира, 19. г. Екатеринбург, 620002, Россия. Тел.: (343) 375-47-94. E-mail: esavateeva@gmail.com ² Институт иммунологии и физиологии УрО РАН. Ул. Первомайская, 106. г. Екатеринбург, 620049. Россия. Тел.: (343) 374-00-70.

*Ведущий направление; *Поддерживающий переписку

Ключевые слова: кинетика, неферментативное гликозилирование белков, инсулин, глугатион.

Аннотация

Рассмотрены кинетические особенности ингибирования восстановленным глутатионом процесса неферментативного гликозилирования инсулина *in vitro* на его начальном этапе, где он состоит из двух последовательных стадий s = 1, 2 и протекает в квазиравновесном режиме по стадии 1. Установлено, что добавки глутатиона не нарушают двухстадийный механизм данного процесса, но снижают его темп и выход конечного продукта – фруктозамина – на стадии 2 за счёт связывания глутатионом (Y) инсулина (I) как реагента стадии 1 в химическое соединение типа I_{α} У по маршрутной реакции p=3: αI $+ Y = I_{\alpha}Y$, где α — модуль стехиометрического коэффициента инсулина. Термодинамические расчёты равновесных концентраций всех компонентов в рабочих растворах по их начальным концентрациям с использованием ранее найденных констант равновесия стадии 1 и 2 показывают, что маршрутная реакция 3 реализуется при $\alpha = 4$ и имеет константу равновесия $K_3^c(T,[c_k]) = 733$ (T = 277K, $[c_k] = 1$ моль/м³).