Регистрационный код публикации: 9-15-1-65

Публикация доступна для обсуждения в рамках функционирования постоянно действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/ Поступила в редакцию 27 июля 2009 г. УДК 547.68+541.124/128.

Тематическое направление: Влияние среды на реакционную способность. Часть XV.

Расчеты энергии акивации реакции циклоприсоединения в растворе

© Урядов Владимир Георгиевич

Кафедра органической химии. Казанский государственный технологический университет. Ул. К. Маркса, 68. г. Казань, 420015. Республика Татарстан. Россия. Тел.: (843) 272-12-53. E-mail: uryadov@kstu.ru

*Ведущий направление; *Поддерживающий переписку

Ключевые слова: энергия активации, теоретический расчет.

Аннотация

Методом, принципиально отличающимся от квантовых, выполнен расчет энергии активации 36ти реакций циклоприсоединения в растворе. Рассматриваемые объекты составили: некатализируемые реакции диенового синтеза, реакции 1,3-диполярного циклоприсоединения, реакции полярного [2+2]циклоприсоединения и катализируемые реакции диенового синтеза. Результаты расчетов сопоставлены с экспериментальными данными. Сопоставление свидетельствует в пользу близости расчетных значений и данных эксперимента.

Введение

Содержание предыдущего сообщения [1] составила модель возможного механизма активации (приобретения энергии, необходимой для преодоления потенциального барьера) органической реакции в жидкой фазе. В качестве основы механизма рассматривается соударение молекул растворителя сольватной оболочки с молекулами, участвующими в химическом превращении [2]. Понятие «соударение» предполагает наличие поступательного движения молекул, характерного для газовой фазы. Формой газового образования в толще жидкости является пузырек пара. Соответственно в работах [1-5] рассмотрена модель пульсирующего нано-пузырка пара из молекул растворителя сольватной оболочки и предреакционного комплекса молекул реагентов. Подобная система обладает запасом избыточной энергии, по отношению к толще жидкого растворителя, играющего роль внешней среды. Избыток энергии в конкретном случае реорганизации структуры реагентов в структуру продуктов может соответствовать энергии активации.

В качестве уравнения, описывающего поведение системы из молекул растворителя сольватной оболочки и предреакционного комплекса молекул реагентов в работах [2-4] рассмотрено уравнение колебания изменения энтропии. На основе колебательного уравнения разработаны набор параметров (L₁, L₂, L₃), численно характеризующих изменение структуры молекул реагентов при переходе от реагентов к продуктам, и вычисляемых по формулам [6]:

$$\mathbf{L}_{1} = \left(\frac{1}{\sqrt[3]{\sum \mathbf{W}_{\text{прод}}} + \sqrt[3]{\sum \mathbf{W}_{\text{pear}}} + 2\sqrt[3]{\mathbf{W}_{\text{solv}}}}\right)^{\frac{1}{4}}$$
(1)

$$L_2 = \sqrt[3]{\sum W_{\Pi p o \pi}} - \sqrt[3]{\sum W_{pear}}$$
 (2)

$$L_{3} = \frac{(\sqrt[3]{\sum W_{\text{прод}}})^{2}}{(\sqrt[3]{\sum W_{\text{pear}}})^{2}}$$
(3)

где: W_{прод (реаг)} – значение топологического индекса (ТИ) Винера [7] молекул продуктов и реагентов соответственно.

Другим следствием уравнения колебания изменения энтропии явилась величина «х», численно характеризующая относительное положение переходного состояния на координате реакции [8]. В работах [9, 10] показана возможность расчета величины «х» с использованием параметров, характеризующих природу растворителей, а также параметров L2 и L3, в соответствии с кубическим уравнением:

$$x^{3} + x \sqrt{\left[\left(\frac{\Delta H_{\text{ucn.}} P_{\text{kp.}} V_{\text{kp.}}}{(RT_{\text{kp.}})^{2}}\right)^{\gamma(1/\gamma)} T_{\text{kp.}} K_{1,1,1}(A)}\right]^{2} K_{2} L_{2} L_{3}} - \frac{1}{2} \left[\left(\frac{\Delta H_{\text{ucn.}} P_{\text{kp.}} V_{\text{kp.}}}{RT_{\text{kp.}}}\right)^{\gamma(1/\gamma)} T_{\text{kp.}} K_{1,1,1}(A)}{T_{\text{kp.}} K_{1,1,1}(A)}\right]^{2} K_{2} L_{2} L_{3} = 0$$
 (4)

 $\Delta H_{\text{исп}}$ – энтальпия испарения растворителей, кДж/моль;

 $P_{\kappa p}$ – критическое давление растворителей, МПа;

 $V_{\rm kp}$ – критический объем растворителей, м³/моль;

R – газовая постоянная, 8.314 Дж/моль К;

T_{кр} – критическая температура растворителей, K;

 $K_{1Д(A)}$ – первая диссипативная константа [11], K^{-1} ;

 K_2 – вторая диссипативная константа [12];

у – управляющий параметр, рассчитываемый по формуле [13]:

$$\gamma = 1 + \frac{x}{2} - \frac{L_1}{L_2 L_3} + \lg \frac{\sum W_{\text{прод}}}{\sum W_{\text{pear}}}$$
 (5)

В работах [14-16] для пульсирующего нано-пузырка пара растворителя, содержащего предреакционный комплекс реагентов, выявлены формы взаимосвязи энергии активации и энтальпии испарения растворителя. При этом для расчета значений коэффициентов пропорциональности $(n_p \ u \ n_{1/y})$, отражающих взаимосвязь энергетических параметров, в работе [17] предложены следующие выражения:

$$\mathbf{n}_{\mathbf{p}} = -0.1123 + 23.59 \,\mathbf{J}_{\mathbf{A}_{\mathbf{F}}}^{-0.25 \,\gamma} + 124.67 \,\mathbf{J}_{\mathbf{K}}^{-0.25 \,\gamma} - 230.53 \,\mathbf{J}_{\mathbf{A}_{\mathbf{F}}}^{-0.25 \,\gamma} \tag{6}$$

$$\mathbf{n}_{\mathbf{p}} = -0.1123 + 23.59 \mathbf{J}_{\mathbf{A}_{\mathbf{K}}}^{-0.25 \, \gamma} + 124.67 \mathbf{J}_{\mathbf{K}}^{-0.25 \, \gamma} - 230.53 \mathbf{J}_{\mathbf{A}_{\mathbf{J}}}^{-0.25 \, \gamma}$$

$$\mathbf{n}_{\mathbf{J}/\gamma} = 7.561 - 87.958 \mathbf{J}_{\mathbf{J}}^{-0.5/\gamma} - 38.42 \mathbf{J}_{\mathbf{A}_{\mathbf{K}}}^{-0.25 \, \gamma} + 3562.37 \mathbf{J}_{\mathbf{K}}^{-1/\gamma} - 1513.9 \mathbf{J}_{\mathbf{A}_{\mathbf{J}}}^{-0.75/\gamma}$$

$$(6)$$

где: Јд - характеристика момента инерции вращательного движения молекул-доноров (Д), рассчитываемая по формуле [18]:

$$J_{\Pi} = M_{\Pi} \sqrt[3]{W_{\Pi}^2}$$
, где : М — молярная масса; W — значение ТИ Винера (8);

 ${
m J}_{{
m A}\kappa}$ — характеристика момента инерции вращательного движения молекул-акцепоров (Ак), рассчитываемая по формуле [18]:

$$\mathbf{J}_{\mathbf{A}\mathbf{K}} = \mathbf{M}_{\mathbf{A}\mathbf{K}} \sqrt[3]{\mathbf{W}_{\mathbf{A}\mathbf{K}}^2} \tag{9};$$

 ${
m J}_{
m A_{
m J}}$ – характеристика момента инерции вращательного движения молекул-аддуктов (Ад), рассчитываемая по формуле [18]:

$$\mathbf{J}_{\mathbf{A}\mathbf{\Pi}} = \mathbf{M}_{\mathbf{A}\mathbf{\Pi}} \sqrt[3]{\mathbf{W}_{\mathbf{A}\mathbf{\Pi}}^2} \tag{10};$$

 ${
m J}_{
m K}$ – характеристика момента инерции вращательного движения предреакционных комплексов молекул реагентов (К), рассчитываемая по формуле [19]:

$$\mathbf{J}_{K} = \left(\frac{\mathbf{M}_{\mathcal{I}} \cdot \mathbf{M}_{\mathbf{A}K}}{\mathbf{M}_{\mathcal{I}} + \mathbf{M}_{\mathbf{A}K}}\right) \sqrt[3]{\left(\mathbf{W}_{\mathcal{I}} + \mathbf{W}_{\mathbf{A}K}\right)^{2}}$$
(11)

Взаимосвязь энергии активации с энтальпией испарения и возможность расчета величины «х» через параметры, характеризующие свойства среды послужили основой для разработки методики расчета энергии активации реакции циклоприсоединения в растворе с

РАСЧЕТЫ ЭНЕРГИИ АКИВАЦИИ РЕАКЦИИ ЦИКЛОПРИСОЕДИНЕНИЯ В РАСТВОРЕ _______65-79 использованием данных по природе растворителя и параметрам, характеризующим изменение структуры молекул реагентов [20].

Целью данной работы является отработка методики расчета энергии активации реакции циклоприсоединения в растворе, основанной на модели механизма активации, на примере ряда реакций циклоприсоединения в растворе.

Экспериментальная часть

Выполнение расчетов энергии активации через энтальпию испарения растворителей осуществлялось по формулами [15, 16]:

$$\mathbf{E}^{\neq} = \mathbf{n}_{1/\gamma} \left(\Delta \mathbf{H}_{\text{HCH}} \right)^{1/\gamma} \tag{12}$$

$$\mathbf{E}^{\neq} = \mathbf{k}_{\text{solv}} \mathbf{n}_{\mathbf{p}} \Delta \mathbf{H}^{\gamma}_{\mathbf{ucn}} + \mathbf{RT}_{\kappa \mathbf{p}}$$
 (13)

где: Е → энергии активации, кДж/моль;

 k_{solv} – коэффициент, отражающий свойства растворителей, рассчитываемый по формуле [15]:

$$\mathbf{k}_{\text{solv.}} = \left(\frac{\mathbf{P}_{\kappa \mathbf{p} - \kappa \mathbf{p}}}{\mathbf{R} \mathbf{T}_{\kappa \mathbf{p}}}\right)^{\gamma} \tag{14}$$

Расчет энергии активации с использованием формул (1)-(14) проводился в следующем порядке [20]:

- 1. По формулам (1), (2) и (3) определены значения параметров L_i , далее вычислены значения произведения L_2L_3 , отношение L_1/L_2L_3 , логарифм отношения сумм значений ТИ молекул продуктов и реагентов.
- 2. По уравнению (4) для двух значений показателя степени и для двух значений первой диссипативной константы рассчитаны четыре значения величины «х», $(x_{Д\gamma})$, $(x_{Д1/\gamma})$, $(x_{A1/\gamma})$, $(x_{A1/\gamma})$.
- 3. С учетом фактора кратности [10] определены четыре набора значений величины «х», для следующих чисел, характеризующих действие фактора кратности: 0.125, 0.25, 0.5, 1.0, 2, 4, 8, 16, $32 \left(\mathbf{x}_{\text{Ду}(1/\gamma)} (\mathbf{A}_{\text{Y}(1/\gamma)}) \times \mathbf{n}_{0.25} \right)$.
- 4. Из двух пар наборов значений величины «х» выбраны значения, наиболее близкие по своей величине.
- 5. Для выбранных значений определены средние, которые приняты за истинные значения величины «х».
- 6. С использованием значений величины «х», принятыми за истинные, по формуле (5) рассчитаны значения управляющего параметра «у».
- 7. По формулам (8)-(11) рассчитаны значения произведения молярной массы на значение ТИ молекул донора, акцептора, аддуктов и молекулярных комплексов.
- 8. С использованием значений управляющего параметра « γ », в соответствие с формулами (6) и (7), рассчитаны значения нецелочисленных степеней J_i .
- 9. С использованием нецелочисленных степеней J_i по формулам (6) и (7) рассчитаны значения « $n_{1/\gamma}$ » и « n_p ».
- 10. По формуле (14) рассчитаны значения коэффициента k_{solv}.
- 11. По формулам (12) и (13) рассчитаны значения энергии активации ($E_{n1/\gamma}$) и (E_P).
- 12. С учетом фактора кратности определены, определены два набора значений энергии активации $(E_{n1/\gamma} \times n_{0.25})$ и $(En_P \times n_{0.25})$, для следующих чисел, характеризующих действие фактора кратности: 0.125, 0.25, 0.5, 1.0, 2, 4, 8.
- 13. Из двух пар наборов значений энергии активации выбраны значения, наиболее близкие по своей величине.
- 14. Для выбранных значений определены средние, которые приняты за истинное значение энергии активации ($E^{\neq}_{pacчer}$).

В соответствии с приведенным алгоритмом произведен расчет значений энергии активации ряда катализируемых и некатализируемых реакций диенового синтеза, а также реакций 1,3-диполяр-ного циклоприсоединения и полярного [2+2]-циклоприсоединения.

Расчеты выполнялись по разработанной нами программе в редакторе «Microsoft Excel».

Результаты и их обсуждение

1. Некатализируемые реакции диенового синтеза

Нами рассмотрены следующие реакции диенового синтеза, для которых в литературы опубликованы данные по энергии активации:

- ▶ 9-метилантрацена (I) и 9,10-диметилантраценом (II) с малеиновым ангидридом (III), цитраконовым ангидридом (IV) и хлормалеиновым ангидридом (V) в среде бензола [21] (рис. 1);
- ➤ антрацена (VI) с арилмалеинимидами (VII)-(X) в среде бензола [22] (рис. 2).

$$\begin{array}{c} R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{1} \\ R_{2} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{5} \\ R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\$$

Рис. 1. Схема некатализируемых реакций диенового синтеза замещенных антраценов с цитраконовым и хлормалеиновым ангидридом в среде бензола, значения ТИ Винера молекул диенов (доноров), диенофилов (акцепторов) и аддуктов

Рис. 2. Схема некатализируемых реакций диенового синтеза антрацена с арилмалеинимидами в среде бензола, а также значения ТИ Винера молекул диена (донора), диенофилов (акцепторов) и аддуктов

Табл. 1. Суммы значения ТИ, логарифм отношения сумм, а также значения параметров \mathbf{L}_i и их функций для некатализируемых реакций диенового синтеза в среде бензола

Диен	Диено-	ΣW_{pear}	$\Sigma W_{прод}$	L_1	L_2	L ₃	L_2L_3	L	$\log \frac{\sum \mathbf{W}_{\text{прод}}}{}$
	фил							$L_{2}L_{3}$	$\sum \mathbf{W}_{\mathbf{pear}}$
I	III	502	925	0.4496	1.7959	1.5030	2.6992	0.1666	0.2654
I	IV	525	1044	0.4472	2.0774	1.5813	3.2851	0.1361	0.2985
I	\mathbf{V}	525	1044	0.4472	2.0774	1.5813	3.2851	0.1361	0.2985
II	III	576	1016	0.4465	1.7327	1.4599	2.5295	0.1765	0.2465
II	IV	599	1154	0.4441	2.0594	1.5483	3.1885	0.1393	0.2848
II	\mathbf{V}	599	1154	0.4441	2.0594	1.5483	3.1885	0.1393	0.2848
VI	VII	762	2032	0.4325	3.5322	1.9230	6.7925	0.0637	0.4260
VI	VIII	690	1807	0.4355	3.3436	1.8999	6.3526	0.0686	0.4181
VI	IX	762	2032	0.4325	3.5322	1.9230	6.7925	0.0637	0.4260
VI	X	952	2569	0.4262	3.8585	1.9383	7.4788	0.0570	0.4311

Значения ТИ Винера перечисленных молекул реагентов и аддуктов приведены на рис. 1 и 2. Значения величин, рассчитываемых на основании ТИ: сумма значений ТИ, логарифм отношения сумм, параметры L_i и их функции, используемые в дальнейших расчетах приведены в табл. 1. В табл. 2 приведены значения $x_{\rm Д}$ и $x_{\rm A}$, полученные непосредственно решением уравнений (4), их значения с учетом фактора кратности ($x_{\rm Д} \times n_{0.25}$ и $x_{\rm A} \times n_{0.25}$), средние

для двух пар значений величины х (хдср и хдср), а также истинные значения величины х. В табл. 3 приведены значения управляющего параметра γ , значения параметров J_{II} и $J_{II/\Phi}$, J_{K} , J_{AII} , а также значения нецелочисленных степеней этих параметров в соответствии с уравнениями (6) и (7).

Табл. 2. Данные по расчету значений величины х для некатализируемых реакций диенового синтеза в среде бензола, номера строк соответствуют табл. 1

X	Д	Х	A	$x_{ m J}$ $ imes$	$n_{0.25}$	$x_A \times$	$n_{0.25}$	хдср	X _{Acp}	X
γ	$1/\gamma$	γ	$1/\gamma$	γ	$1/\gamma$	γ	1/γ			
0.214	0.072	0.528	0.373	0.429	0.289	0.264	0.373	0.359	0.318	0.339
0.232	0.077	0.612	0.396	0.464	0.308	0.306	0.396	0.386	0.351	0.368
0.232	0.077	0.612	0.396	0.464	0.308	0.297	0.396	0.386	0.347	0.366
0.208	0.071	0.501	0.367	0.417	0.284	0.250	0.367	0.351	0.308	0.330
0.228	0.076	0.595	0.394	0.457	0.306	0.297	0.394	0.381	0.345	0.363
0.228	0.076	0.595	0.394	0.228	0.306	0.297	0.394	0.267	0.345	0.306
0.298	0.100	1.055	0.509	0.597	0.403	0.527	0.509	0.500	0.518	0.509
0.292	0.098	1.005	0.497	0.585	0.784	0.502	0.497	0.685	0.499	0.592
0.307	0.107	1.136	0.538	0.615	0.429	0.568	0.538	0.522	0.553	0.537
0.323	0.118	1.300	0.586	0.323	0.473	0.325	0.293	0.398	0.309	0.353

Табл. 3. Значения параметров J_i и их степеней для некатализируемых реакций в среде бензола, номера строк соответствуют табл. 1

γ	J Д,	$J_{\text{Д/}\Phi}$	J_{K}	Јад	$ m J_{ m Д}^{ m -0.5/\gamma}$	$J_{\text{Д/}\Phi}$ -0.25 γ	$J_K^{-1/\gamma}$	$ m J_{AД}^{-0.75/\gamma}$	$ m J_K^{-0.25\gamma}$	$ m J_{AД}^{-0.25\gamma}$
1.26	1118	1469	4101	2756	0.025	0.0990	0.00	0.0024	0.0715	0.0391
1.34	1118	2098	4607	3132	0.031	0.0761	0.00	0.0031	0.0584	0.0306
1.34	1118	2480	5104	3342	0.031	0.0721	0.00	0.0030	0.0566	0.0301
1.23	1330	1469	4601	3075	0.021	0.1052	0.00	0.0019	0.0740	0.0411
1.32	1330	2098	5160	3502	0.028	0.0790	0.00	0.0027	0.0586	0.0310
1.29	1330	2480	5732	3727	0.025	0.0790	0.00	0.0023	0.0602	0.0328
1.61	9481	9717	7616	5862	0.058	0.0244	0.00	0.0061	0.0270	0.0118
1.64	9481	7794	6858	5213	0.061	0.0250	0.00	0.0071	0.0264	0.0115
1.63	9481	1308	8710	6903	0.060	0.0209	0.00	0.0060	0.0247	0.0106
1.55	9481	1489	9492	7435	0.052	0.0241	0.00	0.0044	0.0287	0.0129

Табл. 4. Данные расчетов значений энергии активации для некатализируемых реакций в среде бензола, номера строк соответствуют табл. 1

$n_{1/\gamma}$	n _p	k_{solv}	En _{1/γ}	E _P	$En_{1/\gamma} \times n_{0.25}$	$En_P \times n_{0.25}$	E [≠] pacчет,	Е ≠ эксп,
2.99	2.13	0.192	48	40	48	40	44	56 [21]
3.91	1.90	0.173	41	47	82	47	64	66 [21]
3.74	1.71	0.173	41	47	41	47	44	51 [21]
2.64	2.11	0.200	52	38	52	38	45	45 [21]
3.66	1.90	0.177	42	45	42	43	43	48 [21]
3.33	1.70	0.184	45	43	45	43	44	47 [21]
6.30	1.10	0.122	26	82	53	82	67	71 [22]
7.05	1.13	0.117	25	87	51	87	69	71 [22]
6.11	1.01	0.119	26	84	52	84	68	63 [22]
5.08	1.06	0.132	29	71	58	71	64	60 [22]

В табл. 4 приведены значения коэффициентов пропорциональности $\langle n_1/\gamma \rangle$ и $\langle n_p \rangle$, значения коэффициента k_{solv}, значения энергии активации, рассчитанные по формулам (12) и © *Бутлеровские сообщения.* **2009**. Т.15. №1. *E-mail*: journal.bc@gmail.com

(13) $(En_{1/\gamma})$ и (En_P) , значения энергии активации, полученные при учете фактора кратности $(En_{1/\gamma}\times n_{0.25})$ и $(En_P\times n_{0.25})$, а также средние значения $(E_{pacчет}^{\neq})$ и значения энергии активации полученные экспериментальным путем (E_{skcn}^{\neq}) . Содержание двух последних столбцов табл. 4 отражает соответствие между расчетными значениями энергии активации и экспериментальными данными. Значения указанных величин использованы для построения графика зависимости результатов расчетов от экспериментальных данных (рис. 11).

2. Реакции 1,3-диполярного циклоприсоединения

По аналогии с некатализируемыми реакциями диенового синтеза нами рассмотрены, следующие описанные в литературе, реакции 1,3-диполярного циклоприсоединения с участием нитронов, для которых измерены значения энергии активации:

- ightharpoonup C,N-дифенилнитрона (**XI**) с тетрацианоэтиленом (**XII**) в среде бензола, толуола, хлорбензола [23] (рис. 3);
- ▶ 4,4'-дихлордифенилдиазометана (XIII) с цианоэтиленами (XIV)-(XVII) в среде хлорбензола [24] (рис. 4);
- ightharpoonup С-фенил-N-метилнитрона (**XVIII**) с метилметакрилатом (**XIX**), этиловым эфиром кротоновой кислоты (**XX**) и 2-винилпиридином (**XXI**) в среде толуола [25] (рис. 5).

$$V_{AJ} = 547$$

NC CN

Рис. 3. Схема реакции 1,3-диполярного циклоприсоединения *C,N*-дифенилнитрона к тетрацианоэтилену, а также значения ТИ Винера молекул диполя (донора), диполярофила (акцептора) и аддукта

Тетрацианоэтилен (XII) , W_{Ar} = 222 (R_1 = R_2 = R_3 = R_4 =CN); R_1 = R_2 = R_3 = R_4 =CN, W_{Aq} = 1955 ; Акрилонитрил (XIV) , W_{Ak} = 19 (R_1 =CN, R_2 = R_3 = R_4 =H); R_1 =CN, R_2 =H, R_3 =CN, R_4 =H, R_4 H, R_4 =H, R_4 H, $R_$

Рис. 4. Схема реакции 1,3-диполярного циклоприсоединения 4,4'-дихлордифенилдиазометана к цианоэтиленам, а также значения ТИ Винера молекул диполя (донора), диполярофилов (акцепторов) и аддуктов

Для несимметричных диполярофилов рассматривались аддукты, имеющие электроно-акцепторный заместитель в пятом положении гетероцикла, обеспечивающее наименьшее значение произведения L_2L_3 , что, соответствует кинетическому контролю над протеканием реакции [26].

Значения ТИ Винера перечисленных молекул реагентов и аддуктов приведены на рис. 3, 4 и 5. В табл. 5 представлены значения величин, рассчитываемых на основании ТИ (L_i , L_2L_3 , $lg(\Sigma W_{продукты} / \Sigma W_{реагенты})$.

Табл. 5. Суммы значения ТИ, логарифм отношения сумм, а также значения параметров L_i и их функций для реакций 1,3-диполярного циклоприсоединения

Диполь	Дипо-	ΣW_{pear}	$\Sigma W_{\text{прод}}$	L_1	L_2	L ₃	L_2L_3	L ₁	$\lg \frac{\sum W_{\text{прод}}}{\sum W}$
	лярофил							$L_{2}L_{3}$	∑W _{pear}
XI	XII	768	1659	0.4356	2.6804	1.6711	4.4791	0.0972	0.3345
XI	XII	768	1659	0.4319	2.6804	1.6711	4.4791	0.0964	0.3345
XI	XII	768	1659	0.4319	2.6804	1.6711	4.4791	0.0964	0.3345
XIII	XII	884	1955	0.4278	2.9067	1.6974	4.9339	0.0867	0.3447
XIII	XIV	682	1060	0.4398	1.3939	1.3418	1.8702	0.2351	0.1915
XIII	XV	727	1362	0.4354	2.0930	1.5197	3.1807	0.1369	0.2726
XIII	XVI	719	1318	0.4360	2.0054	1.4978	3.0037	0.1452	0.2632
XIII	XVII	792	1644	0.4317	2.5502	1.6272	4.1498	0.1040	0.3172
XVIII	XIX	217	538	0.4623	2.1239	1.8318	3.8907	0.1188	0.3943
XVIII	XX	270	698	0.4563	2.4073	1.8836	4.5344	0.1006	0.4125
XVIII	XXI	267	755	0.4552	2.6665	1.9997	5.3320	0.0854	0.4514

Рис. 5. Схема реакции 1,3-диполярного циклоприсоединения N-метил-C-фенилнитрона к: 1 – метилметакрилату, 2 – этиловому эфиру кротоновой кислоты, 3 – 2-винилпиридину, а также значения ТИ Винера молекул диполя (донора), диполярофилов (акцепторов) и аддуктов

В табл. 6 приведены значения $x_{\rm J}$ и $x_{\rm A}$, полученные непосредственно решением уравнений (4), их значения с учетом фактора кратности ($x_{\rm J} \times n_{0.25}$ и $x_{\rm A} \times n_{0.25}$), средние для двух пар значений величины х ($x_{\rm Jcp}$ и $x_{\rm Acp}$), а также истинные значения величины х. В табл. 7 приведены значения управляющего параметра γ , значения параметров $J_{\rm J}$ и $J_{\rm J/\Phi}$, $J_{\rm K}$, $J_{\rm AJ}$, а также значения нецелочисленных степеней этих параметров в соответствии с уравнениями (6) и (7).

Табл. 6. Данные по расчету значений величины **х** для реакций 1,3-диполярного циклоприсоединения, номера строк соответствуют табл. 5

X	Д	X	A	$x_{ extsf{\pi}} imes$	n _{0.25}	$x_A \times$	n _{0.25}	ХДср	X _{Acp}	X
γ	$1/\gamma$	γ	1/γ	γ	1/γ	γ	1/γ	-		
0.258	0.086	0.761	0.442	0.517	0.692	0.442	0.761	0.604	0.601	0.603
0.422	0.261	0.840	0.458	0.422	0.523	0.420	0.461	0.473	0.440	0.457
0.322	0.130	0.833	0.461	0.322	0.261	0.416	0.461	0.292	0.439	0.365
0.331	0.135	0.893	0.477	0.331	0.271	0.223	0.238	0.301	0.231	0.266
0.236	0.100	0.426	0.355	0.472	0.402	0.426	0.355	0.437	0.390	0.856
0.288	0.116	0.639	0.413	0.288	0.201	0.213	0.413	0.244	0.313	0.278
0.282	0.114	0.612	0.405	0.282	0.229	0.306	0.405	0.255	0.356	0.305
0.314	0.127	0.783	0.450	0.314	0.510	0.391	0.450	0.412	0.421	0.416
0.417	0.243	0.800	0.428	0.417	0.486	0.400	0.405	0.452	0.403	0.427
0.428	0.257	0.899	0.451	0.428	0.514	0.449	0.451	0.471	0.450	0.824
0.439	0.271	1.034	0.476	0.406	0.543	0.517	0.476	0.474	0.496	0.494

Табл. 7. Значения параметров J_i и их степеней для реакций 1,3-диполярного циклоприсоединения, номера строк соответствуют табл. 5

γ	J Д,	$J_{A\kappa}$	J_{K}	$J_{A_{\mathcal{I}}}$	${ m J}_{ m Д}^{ m -0.5/\gamma}$	$J_{A\kappa}^{-0.25\gamma}$	$J_K^{-1/\gamma}$	Јдд	$J_K^{-0.25\gamma}$	$ m J_{Aд}^{-0.25\gamma}$
1.53	1319	4682	6512	4559	0.0458	0.0387	0.00	0.0054	0.0341	0.0161
1.46	1319	4682	6512	4559	0.0394	0.0451	0.00	0.0041	0.0400	0.0196
1.42	1319	4682	6512	4559	0.0355	0.0497	0.00	0.0035	0.0442	0.0221
1.39	1817	4682	7682	5741	0.0294	0.0529	0.00	0.0027	0.0445	0.0221
1.16	1817	378	3364	3037	0.0148	0.1780	0.00	0.0013	0.0942	0.0497
1.27	1817	1249	4758	3897	0.0214	0.1030	0.00	0.0020	0.0672	0.0344
1.27	1817	1142	4723	3812	0.0211	0.1067	0.00	0.0020	0.0680	0.0350
1.42	1817	2631	6165	4766	0.0318	0.0609	0.00	0.0034	0.0450	0.0218
1.48	4244	1190	2076	1556	0.0605	0.0716	0.00	0.0077	0.0582	0.0275
1.54	4244	2359	2585	1961	0.0667	0.0501	0.00	0.0082	0.0483	0.0221
1.60	4244	2127	2452	1992	0.0746	0.0459	0.00	0.0099	0.0433	0.0186

Табл. 8. Данные расчетов значений энергии активации для реакций 1,3-диполярного циклоприсоединения, номера строк соответствуют табл. 5

$n_{1/\gamma}$	n _p	k_{solv}	$En_{1/\gamma}$	E _P	$En_{1/\gamma} \times n_{0.25}$	$En_P \times n_{0.25}$	Е≠ расчет,	E [≠] эκсп,
5.77	1.33	0.135	57	45	57	91	74	81 [23]
5.03	1.42	0.141	61	48	61	95	78	87 [23]
4.64	1.47	0.151	63	48	63	48	55	59 [23]
4.56	1.59	0.157	65	48	33	48	40	44 [24]
0.78	4.38	0.158	11	121	45	61	53	52 [24]
3.36	2.77	0.183	61	62	61	62	61	56 [24]
3.19	2.81	0.184	58	62	29	31	30	32 [24]
4.96	1.92	0.151	67	61	33	30	32	33 [24]
8.86	2.49	0.136	103	84	52	84	68	68 [25]
9.23	1.99	0.100	77	57	77	57	67	74 [25]
12.11	2.07	0.116	117	92	59	92	75	79 [25]

В табл. 8 приведены значения коэффициентов пропорциональности « $n_{1/\gamma}$ » и « n_p », значения коэффициента k_{solv} , значения энергии активации, рассчитанные по формулам (12) и (13) ($En_{1/\gamma}$) и (En_p), значения энергии активации, полученные при учете фактора кратности ($En_{1/\gamma} \times n_{0.25}$) и ($En_p \times n_{0.25}$), а также средние значения (E_{pacqer}^{\neq}) и значения энергии активации

РАСЧЕТЫ ЭНЕРГИИ АКИВАЦИИ РЕАКЦИИ ЦИКЛОПРИСОЕДИНЕНИЯ В РАСТВОРЕ ______ 65-79 полученные экспериментальным путем ($E^{\neq}_{\text{экспт}}$). Содержание двух последних столбцов табл. 8 отражает соответствие между расчетными значениями энергии активации и экспериментальными данными. Значения указанных величин использованы для построения графика зависимости результатов расчетов от экспериментальных данных (рис. 11).

3. Реакции полярного [2+2]-циклоприсоединения

Изложенный подход применен к реакциям полярного [2+2]-циклоприсоединения, протекание которых должно обладать некоторыми особенностями, по сравнению с реакциями [4 π +2 π]-циклоприсоединения [27]. Рассмотрены следующие, описанные в литературе, реакции полярного [2+2]-циклоприсоединения:

- **XII** с *п*-метоксифенилвилилсульфидом (**XXII**), *п*-толилвинилсульфидом (**XXIII**) и фенилвинилсульфидом (**XXIV**) в среде хлорбензола и 1,2-дихлорэтана [28] (рис. 6);
- ➤ изобутенилэтилоксида (XXV) с XII и XVI в среде бензола и толуола [29] (рис. 7);
- ▶ винилфенилоксида (XXVI) с 4-фенил-1,2,4-триазолин-3,5-дионом (XXVII) в среде бензола [29] (рис. 8).

Для аддукта изобутенилоксида и 1,1-дицианоэтилена принято строение, обеспечивающее наименьшее значение произведения L_2L_3 , что, согласно данных главы 3, соответствует кинетическому контролю над протеканием реакции.

$$_{NC}$$
 $_{NC}$ $_{N$

Рис. 6. Схема реакции полярного [2+2]-циклоприсоединения виниларилсульфидов к тетрацианоэтилену, а также значения ТИ Винера молекул доноров и аддуктов

Рис. 7. Схема реакций полярного [2+2]-циклоприсоединения изобутенилэтилоксида к тетрацианоэтилену и 1,1-дицианоэтилену, а также значения ТИ Винера молекул донора и аддуктов

Значения ТИ Винера перечисленных молекул реагентов и аддуктов приведены на рис. 6, 7 и 8, а также 3 и 4. Значения величин, рассчитываемых на основании ТИ: сумма значений ТИ, логарифм отношения сумм, параметры L_i и их функции, используемые в дальнейших расчетах — приведены в табл. 9. В табл. 10 приведены значения $x_{\rm Z}$ и $x_{\rm A}$, полученные непосредственно решением уравнений (4), их значения с учетом фактора кратности ($x_{\rm Z}$ × $n_{0.25}$ и

 $x_{A} \times n_{0.25}$), средние для двух пар значений величины х ($x_{\text{Дср}}$ и $x_{\text{Аср}}$), а также истинные значения величины x. В табл. 11 приведены значения управляющего параметра γ , значения параметров $J_{\text{Д}}$ и $J_{\text{Д/\Phi}}, J_{\text{K}}, J_{\text{АД}}$, а также значения нецелочисленных степеней этих параметров в соответствии с уравнениями (6) и (7).

Табл. 9. Суммы значения ТИ, логарифм отношения сумм, а также значения параметров L_i и их функций для реакций полярного [2+2]-циклоприсоединения

Донор	Акцеп-	Растворитель	ΣW_{pear}	$\Sigma W_{\text{прод}}$	L_1	L_2	L_3	L_2L_3	L	$lg \frac{\sum W_{npog}}{\sum \cdots}$
	тор								$\overline{\mathrm{L_{2}L_{3}}}$	∑ W _{pear}
XXII	XII	Хлорбензол	394	1106	0.4454	3.0105	1.9899	5.9907	0.0743	0.4483
XXII	XII	1,2-Дихлоэтан	394	1106	0.4618	3.0105	1.9899	5.9907	0.0771	0.4483
XXIII	XII	Хлорбензол	375	969	0.4479	2.6843	1.8830	5.0547	0.0886	0.4123
XXIII	XII	1,2-Дихлоэтан	375	969	0.4649	2.6843	1.8830	5.0547	0.0920	0.4123
XXIV	XII	Хлорбензол	347	841	0.4508	2.4120	1.8043	4.3520	0.1036	0.3845
XXIV	XII	1,2-Дихлоэтан	347	841	0.4684	2.4120	1.8043	4.3520	0.1076	0.3845
XXV	XII	Бензол	285	572	0.4635	1.7202	1.5911	2.7370	0.1694	0.3026
XXV	XVI	Бензол	285	572	0.4585	1.7202	1.5911	2.7370	0.1675	0.3026
XXV	XII	Толуол	120	282	0.4837	1.6252	1.7676	2.8728	0.1684	0.3711
XXV	XVI	Толуол	120	282	0.4775	1.6252	1.7676	2.8728	0.1662	0.3711
XXVI	XXVII	Бензол	428	1273	0.4465	3.3017	2.0682	6.8286	0.0654	0.4734

Рис. 8. Схема реакции полярного [2+2]-циклоприсоединения винилфенилоксида к 4-фенил-1,2,4триазолин-3,5-диону, а также значения ТИ Винера молекул донора, акцептора и аддукта

Табл. 10. Данные по расчету значений величины х для реакций полярного [2+2]-циклоприсоединения, номера строк соответствуют табл. 9

X	Д	X	A	$x_{\mathcal{I}} \times$	n _{0.25}	$x_A \times$	n _{0.25}	хдер	X_{Acp}	X
γ	$1/\gamma$	γ	$1/\gamma$	γ	$1/\gamma$	γ	1/γ			
0.356	0.142	1.101	0.503	0.356	0.285	0.275	0.251	0.320	0.263	0.292
0.481	0.512	-	1.993	0.240	0.256	-	0.249	0.248	0.249	0.248
0.338	0.134	0.946	0.474	0.338	0.268	0.236	0.237	0.303	0.236	0.270
0.476	0.482	-	1.884	0.238	0.268	-	0.237	0.253	0.237	0.245
0.324	0.127	0.848	0.450	0.324	0.482	0.424	0.471	0.403	0.447	0.425
0.472	0.458	-	1.793	0.472	0.458	-	0.450	0.465	0.450	0.458
0.218	0.071	0.545	0.371	0.437	0.286	0.272	0.224	0.361	0.248	0.305
0.385	0.219	0.593	0.385	0.385	0.438	0.296	0.385	0.411	0.341	0.376
0.227	0.071	0.587	0.370	0.454	0.568	0.587	0.371	0.511	0.479	0.495
0.394	0.218	0.642	0.384	0.394	0.438	0.545	0.384	0.416	0.465	0.440
0.303	0.099	1.097	0.506	0.303	0.398	0.274	0.506	0.350	0.390	0.370

γ	$J_{\mathcal{A}}$,	$J_{D\!\!\!/\!\Phi}$	J_{K}	$J_{AД}$	$ m J_{ m Д}^{ ext{-}0.5/\gamma}$	$J_{\text{Д/}\Phi}^{-0.25\gamma}$	${ m J_K}^{-1/\gamma}$	$ m J_{AД}^{-0.75/\gamma}$	$ m J_K^{-0.25\gamma}$	$ m J_{AД}^{-0.25\gamma}$
-										
1.520	5161	4682	3888	3147	0.060	0.0403	0.00	0.0060	0.0432	0.0195
1.495	5161	4682	3888	3147	0.057	0.0424	0.00	0.0056	0.0455	0.0208
1.458	4316	4682	3595	2725	0.056	0.0459	0.00	0.0052	0.0505	0.0241
1.442	4316	4682	3595	2725	0.055	0.0474	0.00	0.0049	0.0522	0.0251
1.493	3423	4682	3259	2354	0.065	0.0426	0.00	0.0064	0.0488	0.0233
1.505	3423	4682	3259	2354	0.067	0.0415	0.00	0.0066	0.0476	0.0226
1.285	1602	4682	2434	1572	0.056	0.0661	0.00	0.0036	0.0816	0.0448
1.323	1602	4682	2434	1572	0.061	0.0611	0.00	0.0042	0.0758	0.0409
1.450	1602	1142	1067	7664	0.078	0.0778	0.00	0.0098	0.0798	0.0390
1.425	1602	1142	1067	7664	0.075	0.0814	0.00	0.0090	0.0834	0.0413
1.593	3019	7883	4047	3468	0.080	0.0280	0.00	0.0073	0.0366	0.0155

Табл. 11. Значения параметров J_i и их степеней для реакций полярного [2+2]-циклоприсоединения, номера строк соответствуют табл. 9

В табл. 12 приведены значения коэффициентов пропорциональности $\langle n_{1/\gamma} \rangle$ и $\langle n_p \rangle$, значения коэффициента k_{solv} , значения энергии активации, рассчитанные по формулам (12) и (13) $(En_{1/\gamma})$ и (En_p) , значения энергии активации, полученные при учете фактора кратности $(En_{1/\gamma}\times n_{0.25})$ и $(En_p\times n_{0.25})$, а также средние значения $(E_{pacчет}^{\neq})$ и значения энергии активации полученные экспериментальным путем (E_{ncm}^{\neq}) . Содержание двух последних столбцов табл. 12 отражает соответствие между расчетными значениями энергии активации и экспериментальными данными. Значения указанных величин использованы для построения графика зависимости результатов расчетов от экспериментальных данных (рис. 11).

Табл. 12. Данные расчетов значений энергии активации для реакций полярного [2+2]-циклоприсоединения, номера строк соответствуют табл. 9

$n_{1/\gamma}$	n _p	k_{solv}	$En_{1/\gamma}$	E _P	$En_{1/\gamma} \times n_{0.25}$	$En_P \times n_{0.25}$	Е [≠] _{расчет} ,	Е ≠
6.34	1.60	0.1374	81	68	33	24	28	27 [29]
6.56	1.59	0.1319	72	54	18	13	15	18 [29]
2.92	1.29	0.1878	74	59	37	29	33	33 [29]
3.30	1.35	0.1709	67	47	33	24	28	25 [29]
11.91	2.67	0.1516	75	60	34	36	35	36 [29]
10.88	2.68	0.1491	70	50	35	25	30	29 [29]
7.08	1.73	0.1327	45	27	23	27	25	-
6.65	1.76	0.1338	52	34	26	34	30	-
5.88	1.70	0.1433	135	72	34	36	35	-
5.64	1.72	0.1436	141	78	35	39	37	-
7.73	1.53	0.1259	70	57	35	29	32	36 [29]

4. Катализируемые реакции диенового синтеза

Существенное влияние на кинетику химических реакций оказывают катализаторы. Например, в условиях реакции диенового синтеза значительный рост активности диенофилов вызывается кислотами Льюиса, что рассматривается как действие катализатора [30]. Экспериментально установлено, что молекула кислоты Льюиса координируется с молекулой диенофила, приводя к росту электроноакцепторных свойств 2π -компонента и соответственно к росту его реакционной способности [30].

Если излагаемый в данной работе подход адекватно отражает взаимосвязь структуры органических молекул и их реакционной способности, то метод расчета энергии активации с использованием данных по природе среды и структуре молекул, участвующих в химическом превращении может быть применен к катализируемым реакциям диенового синтеза.

Нами рассмотрены следующие, экспериментально изученные, катализируемые реакции © *Бутлеровские сообщения.* **2009**. Т.15. №1. *E-mail*: journal.bc@gmail.com **75**

диенового синтеза:

- ➤ VI с арилмалеинимидами (VII)-(X) в среде бензола [22] (рис. 9);
- ➤ 2,3,4,5-тетрафенилциклопентадиенона (**XXVIII**) с арилмалеинимидами (**VII**)-(**X**) в среде бензола [31] (рис. 10).

В работах [19, 32] действие катализатора в условиях реакции диенового синтеза учитывалось в соответствии со схемами реакций, приведенными на рис. 9-11, где показано, что для катализируемой реакции в качестве реагентов рассматривались диен и комплекс диенофила с кислотой Льюиса. Соответственно в качестве продуктов выступали аддукт и регенерированная кислота Льюиса. Значения ТИ Винера реагентов и продуктов, катализируемых реакций приведены на рис. 2, а также на рис. 9–11.

Рис. 9. Схема реакции диенового синтеза антрацена и комплексов арилмалеинимидов с хлористым алюминием, а также значения ТИ Винера комплексов молекулы диенофила с молекулой кислоты Льюиса

$$\mathbb{C}_{Q}$$
 — \mathbb{C}_{Q} — $\mathbb{$

Рис. 10. Схема реакции диенового синтеза 2,3,4,5-тетрафенилциклопентадиенона и комплексов арилмалеинимидов с хлористым алюминием в среде бензола, также значения ТИ Винера молекулы диена и аддуктов

Табл. 13. Суммы значения ТИ, логарифм отношения сумм, а также значения параметров L_i и их функций для катализируемых реакций диенового синтеза в среде бензола

Диен	Диено- фил	ΣW_{pear}	$\Sigma W_{\text{прод}}$	L_1	L_2	L_3	L_2L_3	$\frac{\frac{L_{_1}}{L_{_2}L_{_3}}$	$lg \frac{\sum W_{npog}}{\sum W_{pear}}$
VI	VII	1158	2041	0.4274	2.1836	1.4591	3.1861	0.1341	0.2461
VI	VIII	1030	1816	0.4306	2.1013	1.4594	3.0668	0.1404	0.2463
VI	IX	1158	2041	0.4274	2.1836	1.4591	3.1861	0.1341	0.2461
VI	X	1438	2578	0.4212	2.4246	1.4758	3.5781	0.1177	0.2535
XXIX	VII	3561	6399	0.3961	3.2947	1.4781	4.8698	0.0813	0.2545
XXIX	VIII	3433	5966	0.3976	3.0514	1.4455	4.4106	0.0902	0.2400
XXIX	IX	3561	6399	0.3961	3.2947	1.4781	4.8698	0.0813	0.2545
XXIX	X	3841	7394	0.3930	3.8209	1.5475	5.9127	0.0665	0.2844

Значения ТИ Винера перечисленных молекул реагентов и аддуктов приведены на рис. 9-11, а также 1 и 2. Значения величин, рассчитываемых на основании ТИ: сумма значений ТИ, логарифм отношения сумм, параметры L_i и их функции, используемые в дальнейших расчетах – приведены в табл. 13. В табл. 14 приведены значения х_Д и х_А, полученные непосредственно решением уравнений (4), их значения с учетом фактора кратности ($x_{\text{Д}} \times n_{0.25}$ и $x_{\text{A}} \times n_{0.25}$), средние для двух пар значений величины x ($x_{\text{Дср}}$ и $x_{\text{Аср}}$), а также истинные значения величины x. В табл. 15 приведены значения управляющего параметра γ , значения параметров J_{II} и $J_{II/\Phi}$, J_{K} , ${
m J}_{
m AI\!\!\! J}$, а также значения нецелочисленных степеней этих параметров в соответствии с уравнениями (6) и (7).

Табл. 14. Данные по расчету значений величины х для катализируемых реакций диенового синтеза в среде бензола, номера строк соответствуют табл. 13

хд		XA		$x_{\text{Д}} \times n_{0.25}$		$x_A \times n_{0.25}$		ХДср	X _{Acp}	X
γ	1/γ	γ	1/γ	γ	1/γ	γ	1/γ			
0.225	0.077	0.581	0.398	0.452	0.310	0.581	0.398	0.381	0.489	0.435
0.223	0.076	0.567	0.392	0.446	0.306	0.567	0.392	0.376	0.480	0.428
0.225	0.077	0.581	0.398	0.226	0.306	0.290	0.199	0.266	0.244	0.255
0.235	0.081	0.628	0.414	0.235	0.324	0.314	0.207	0.280	0.260	0.270
0.258	0.092	0.760	0.465	0.517	0.369	0.380	0.465	0.443	0.422	0.433
0.249	0.089	0.708	0.450	0.499	0.356	0.354	0.351	0.428	0.353	0.390
0.258	0.092	0.760	0.465	0.517	0.369	0.380	0.465	0.443	0.422	0.433
0.275	0.099	0.873	0.498	0.275	0.198	0.218	0.249	0.237	0.233	0.235

Табл. 15. Значения параметров J_i и их степеней для катализируемых реакций диенового синтеза в среде бензола, номера строк соответствуют табл. 13

γ	J _Д ,	$J_{\text{Д/}\Phi}$	J_{K}	Јад	$ m J_{ m Д}^{-0.5/\gamma}$	$J_{\text{Д/}\Phi}^{-0.25\gamma}$	$J_K^{-1/\gamma}$	$ m J_{AД}^{-0.75/\gamma}$	$ m J_K^{-0.25\gamma}$	$ m J_{AД}^{-0.25\gamma}$
1.32	9481	2692	1263	5862	0.032	0.0337	0.00	0.0020	0.0433	0.0260
1.32	9481	2281	1149	5213	0.031	0.0365	0.00	0.0021	0.0457	0.0278
1.23	9481	3237	1343	6903	0.024	0.0400	0.00	0.0012	0.0525	0.0316
1.25	9481	3631	1506	7435	0.025	0.0375	0.00	0.0012	0.0494	0.0300
1.38	7621	2692	4076	1968	0.017	0.0289	0.00	0.0014	0.0250	0.0145
1.34	7621	2281	3881	1832	0.015	0.0342	0.00	0.0012	0.0286	0.0170
1.38	7621	3237	4488	2191	0.017	0.0271	0.00	0.0013	0.0242	0.0139
1.33	7621	3631	4503	2285	0.014	0.0300	0.00	0.0010	0.0279	0.0162

Табл. 16. Данные расчетов значений энергии активации для катализируемых реакций диенового синтеза в среде бензола, номера строк соответствуют табл. 13

$n_{1/\gamma}$	n_p	k_{solv}	$En_{1/\gamma}$	En_{P}	$En_{1/\gamma} \times n_{0.25}$	$En_P \times n_{0.25}$	E^{\neq}_{pacqer} ,	E [≠] _{эксп} ,
							кДж/моль	кДж/моль
3.29	0.09	0.1773	46	6	46	51	48	43 [22]
3.25	0.05	0.1796	47	6	46	45	45	43 [22]
3.71	0.09	0.1994	64	6	32	48	40	36 [22]
3.67	0.02	0.1914	59	5	29	40	35	35 [22]
4.52	0.35	0.1640	59	11	59	46	52	47 [31]
4.52	0.35	0.1738	63	10	63	41	52	56 [31]
4.59	0.33	0.1640	60	11	60	43	52	55 [31]
4.79	0.33	0.1760	67	11	56	51	53	59 [31]

В табл. 16 приведены значения коэффициентов пропорциональности $\langle n_{1/\gamma} \rangle$ и $\langle n_p \rangle$, значения коэффициента k_{solv} , значения энергии активации, рассчитанные по формулам (12) и (13) ($En_{1/\gamma}$) и (En_P), значения энергии активации, полученные при учете фактора кратности ($En_{1/\gamma} \times n_{0.25}$) и ($En_P \times n_{0.25}$), а также средние значения ($E_{pacчет}^{\neq}$) и значения энергии активации полученные экспериментальным путем (E_{skcnt}^{\neq}). Содержание двух последних столбцов табл. 16 отражает соответствие между расчетными значениями энергии активации и экспериментальными данными. Значения указанных величин использованы для построения графика зависимости результатов расчетов от экспериментальных данных (рис. 11).

5. Анализ данных расчетов

На основании данных табл. 4, 8, 12 и 16 для 36 расчетных значений энергии активации реакций циклоприсоединения в растворе, включающих катализируемую и некатализируемую реакцию диенового синтеза, 1,3-диполярное циклоприсоединение и полярное [2+2]-циклоприсоединение, построен один, общий график зависимости расчетных значений энергии активации от экспериментальных данных (рис. 11). Представленная зависимость характеризуется коэффициентом корреляции с удовлетворительным значением и тангенсом угла наклона, близким к единице. Это свидетельствует о существовании определенного соответствия между результатами экспериментального исследования кинетики реакций циклоприсоединения в растворе и значениями энергии активации, полученными на основании предлагаемого метода с использованием энтальпии испарения растворителей, критических параметров растворителей, а также сведений о строении молекул реагентов и продуктов.

Рис. 11. График зависимости расчетных значений энергии активации, рассматриваемых реакций, от экспериментальных данных

Зависимость, представленная на рис. 11 свидетельствует в пользу существования прогнозирующей способности у разработанного метода расчета значений энергии активации реакций циклоприсоединения в растворе [20]. Следствием чего является принципиальная возможность практического использования предлагаемой методики. Существенным досточиством предлагаемого метода расчета энергии активации реакций циклоприсоединения в растворе, по сравнению с методами квантовой химии, является простота и значительно меньшие затраты времени, в том числе и непосредственно на выполнение вычислений, поскольку отпадает необходимость в многократной диагонализации матриц.

Выводы

Метод расчета энергии активации реакций циклоприсоединения в растворе, основанный на использовании энтальпии испарения растворителей, критических параметров растворителей, а также сведений о строении молекул реагентов и продуктов – обладает прогнозирующей способностью.

Литература

- [1] Урядов В.Г., Офицеров Е.Н. Бутлеровские сообщения. 2008.Т.15. №1. С.65.
- [2] Офицеров Е.Н., Урядов В.Г. Докл РАН. 2007. Т.416. №3. С.344.
- [3] Uryadov V.G., Ofitserov E.N. Mendeleev Commun. 2003. No.1. P.39.
- [4] Урядов В.Г., Офицеров Е.Н. *Химия и компьютерное моделирование*. *Бутлеровские сообщения*. **2003**. Т.4. №1. С.1.
- [5] Урядов В.Г., Офицеров Е.Н. Вестник Казанского технологического университета. 2003. №2. С.34.
- [6] Урядов В.Г., Офицеров Е.Н. *Химия и компьютерное моделирование. Бутлеровские сообщения.* **2003**. Т.4. №3. С.4.
- [7] Wiener H. J. Am. Chem. Soc. 1947. Vol. 69. No. 1. P. 17
- [8] Урядов В.Г., Офицеров Е.Н. *Химия и компьютерное моделирование. Бутлеровские сообщения.* **2003**. Т.4. №3. С.15.
- [9] Урядов В.Г., Офицеров Е.Н. Бутлеровские сообщения. 2006. Т.8. №1. С.1.
- [10] Урядов В.Г., Офицеров Е.Н. *Вестник Казанского технологического университета*. **2006**. №4. С.7.
- [11] Урядов В.Г., Офицеров Е.Н. *Химия и компьютерное моделирование. Бутлеровские сообщения.* **2004**. Т.5. №1. С.17.
- [12] Урядов В.Г., Офицеров Е.Н. *Химия и компьютерное моделирование. Бутлеровские сообщения.* **2004**. Т.5. №2. С.1.
- [13] Урядов В.Г., Офицеров Е.Н. *Бутлеровские сообщения*. **2005**. Т.б. №1. С.13.
- [14] Урядов В.Г., Офицеров Е.Н. *Вестник Казанского технологического университета*. **2005**. №2. С.19.
- [15] Урядов В.Г., Офицеров Е.Н. *Бутлеровские сообщения*. **2005**. Т.б. №2. С.1.
- [16] Урядов В.Г., Офицеров Е.Н. *Бутлеровские сообщения*. **2005**. Т.7. №4. С.1.
- [17] Урядов В.Г., Офицеров Е.Н. *Бутлеровские сообщения*. **2006**. Т.8. №3. С.14.
- [18] Урядов В.Г., Аристова Н.В., Офицеров Е.Н. Журн. физ. химии. 2005. Т.79. №5. С.1523.
- [19] Урядов В.Г., Офицеров Е.Н. *Вестник Казанского технологического университета*. **2005**. №1. С.41.
- [20] Урядов В.Г., Офицеров Е.Н. *Вестник Казанского технологического университета*. **2006**. №4. С.13.
- [21] Киселев В.Д., Шакиров И.М., Коновалов А.И. Журн. орган. химии. 1986. Т.22. Вып.5. С.1035.
- [22] Киселев В.Д., Хузяшева Д.Г., Коновалов А.И. Журн. орган. химии. 1983. Т.19. Вып.6. С.1268.
- [23] Самуилов Я.Д. и др. Журн. орган. химии. 1979. Т.15. Вып.2. С.279.
- [24] Самуилов Я.Д, Мовчан А.И., Коновалов А.И. Журн. орган. химии. 1981. Т.17. Вып. 6. С.1205.
- [25] Huisgen R., Seidl H., Brining I. Chem. Ber. 1969. Bd.102. No.4. S.1102.
- [26] Урядов В.Г., Офицеров Е.Н. *Известия вузов. Химия и химическая технология.* **2005**. Т.48. Вып.2. С.81.
- [27] Эпиотис Н. Структурная теория органической химии. Пер. с англ.; под ред. К.П. Бутина. *М.: Мир.* **1981**. 333с.
- [28] Соломонов Б.Н. и др. Журн. общ. химии. 1977. Т.47. Вып.11. С.2624.
- [29] Архиреева И.А. Влияние сольватационных и структурных факторов на активность и селективность аддендов в реакциях полярного 2+2-циклоприсоединения: автореферат дис. на соискание уч. сепени канд. хим. наук. *Казань: Казанский гос. ун-т.* **1984**. 24с.
- [30] Киселев В.Д., Коновалов А.И. Успехи химии. 1989. Т.58. Вып.3. С.383.
- [31] Киселев В.Д., Шакиров И.М., Коновалов А.И. Журн. орган. химии. 1986. Т.22. Вып.2. С.311.
- [32] Урядов В.Г., Офицеров Е.Н. Вестник Казанского технологического университета. **2005**. №1. С.75.