Полная исследовательская публикация

Тематический раздел: Физико-химические исследования. Подраздел: Физическая химия.

Регистрационный код публикации: 12-29-2-50
Публикация доступна для обсуждения в рамках функционирования постоянно действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/УДК 544.47:544.344. Поступила в редакцию 24 февраля 2012 г.

Физико-химическое исследование реакций этерификации и переэтерификации в системе триацилглицерины — олеиновая кислота — этанол в условиях кислотного катализа

© Пермякова Ирина Александровна, Вольхин Владимир Васильевич и Казаков Дмитрий Александрович

Кафедра химии и биотехнологии. Пермский национальный исследовательский политехнический университет. Комсомольский пр., 29. г. Пермь, 614990. Пермский край. Россия. Тел./Факс: (342) 239-15-11. E-mail: vvv@purec.pstu.ac.ru, zernina88@mail.ru

Ключевые слова: реакция этерификации, триацилглицерины, некондиционное подсолнечное масло, олеиновая кислота, этанол, этилолеат, фазовая диаграмма, кинетика процесса, диффузионный режим, кинетический режим.

Аннотация

Приведены результаты исследования фазового состава в системе TAG – OIA – EtOH, где TAG – триацилглицерины (подсолнечное масло), OIA – олеиновая кислота, EtOH – этанол. Выбранная система моделирует по составу компонентов некондиционные виды растительных масел. Определена взаимная растворимость компонентов, построена фазовая диаграмма тройной системы. Показана роль OIA как сорастворителя для TAG и EtOH и установлен переход композиции из двухфазного состояния в однофазное при доле OIA в композиции выше 23-30 % масс. На диаграмме представлены бинодальные кривые при температурах от 20 до 70 °C.

Теоретически рассмотрена и экспериментально исследована возможность реализации процессов в диффузионном и кинетическом режиме для реакций этерификации и переэтерификации. Показано влияние фазового состава композиции на режим и кинетические показатели процесса взаимодействия. В качестве кинетических показателей выбраны эффективный коэффициент скорости процесса, $k_{эф}$, и энергия активации, E_a .

^{*}Ведущий направление; *Поддерживающий переписку