Subsection: Chemistry of Complex Compounds.

Registration Code of Publication: 13-33-1-133

Publication is available for discussion in the framework of the on-line Internet conference "*Butlerov readings*". http://butlerov.com/readings/

Contributed: December 20, 2012.

The study of the solubility of complexes with general formula $aM^nCl_n \cdot mZnCl_2 \cdot pEt_2O$ in the media of diethyl ether (where M = Li, Mg, Ca, Sr, Ba; a = 1-2; n = 1-2; m = 1.2; p = 2-6; $Et_2O - diethyl$ ether)

© Yury M. Mikhailov, ¹* Roza F. Gatina, ¹* Zalimkhan K. Omarov, ²+ and Oksana N. Shakurskaya ¹ Federal State Enterprise "State Scientific-Research Institute of Chemical Products". Svetlaya St., 1. Kazan, 420033. Russia. Phone: +7 (843) 544-07-21. E-mail: gniihp@bancorp.ru; ²⁾ Phone: +7 (843) 541-76-02. E-mail: omarov@mail.ru

Keywords: complex compounds, diethyl ether, solvent.

Abstract

For isothermal solubility studies in systems M^nCl_n - $ZnCl_2$ - Et_2O , 298K we have established the regions of equilibrium crystallization of complexes: $aM^nCl_n \cdot mZnCl_2 \cdot pEt_2O$ (where M = Li, Mg, Ca, Sr, Ba; n = 1-2; m = 1.2; p = 2-6; $Et_2O -$ diethyl ether) and the formation of chloride complexes: $LiCl \cdot ZnCl_2 \cdot 4Et_2O$, $LiCl \cdot ZnCl_2 \cdot 4Et_2O$, $CaCl_2 \cdot ZnCl_2$

Discovered complexes were isolated. By elemental analysis we established the composition of phases formed in the system $aM^nCl_n \cdot mZnCl_2 \cdot pEt_2O$.

^{*}Supervising author; *Corresponding author