Thematic Section: Physics and Chemistry of Explosives.	 Full Paper

Subsection: Physics and Chemistry of Radicals.

Registration Code of Publication: 13-35-9-139

Publication is available for discussion in the framework of the on-line Internet conference "*Butlerov readings*". http://butlerov.com/readings/

Contributed: July 24, 2013.

Ring strain energy and its influence on dissociation energy of C-H-bond in cycloalkanes, cycloalkenes, cycloaromatic hydrocarbons and O-H-bond in cyclocarboxylic acids

© Vladimir E. Tumanov, and Evgeny T. Denisov*

Institute of Problems of Chemical Physics RAS. Chernogolovka, 142432. Moscow Region. Russia. Fax: +7 (496) 522-35-07. E-mail: tve@icp.ac.ru

*Supervising author; *Corresponding author

Keywords: bond dissociation energy, ring strain energy, cycloalkanes, cycloalkenes, cycloaromatic compounds, cyclocarboxylic acids, electronegativity, linear correlations.

Abstract

Empirical research of influence of ring stain energy (E_{rsc}) on dissociation energy of C-H-bond (D_{C-H}) in cycloalkanes, cycloalkenes and cycloaromatic hydrocarbons (indane, tetraline) is conducted. It is shown that for all cyclic compounds, except cyclopropane, the simple relation is carried out: $D_{C-H} = D_{C-H}(\Delta E_{rsc} = 0) + \Delta E_{rsc}$, rate ΔE_{rsc} represents a difference of energies of ring strain energy of the formed radical and an initial molecule. Values $D_{C-H}(\Delta E_{rsc} = 0)$ are close to D_{C-H} of linear hydrocarbons (paraffins, olefins). For cyclocarboxylic acids linear correlation between dissociation energy of O-H-bond and its electronegativity is established.