Registration Code of Publication: 14-40-12-84

Subsection: Chemical Technology.

The article is published on the materials of report presented at the "International Scientific Forum Butlerov Heritage –

2015". http://foundation.butlerov.com/bh-2015/ (English Preprint)

Contributed: December 18, 2014.

The influence of the ratio of carbon black: silicon dioxide on the structure of the tread rubber

© Artem M. Mokhnatkin, Alexander L. Zotov, Valery P. Dorozhkin, and Elena G. Mokhnatkina

¹ Management Company "Tatneft-Neftechim." Nizhnekamsk Industrial Area, 423570. Republic of Tatarstan. Russia. ² JSC "Nizhnekamskshina". Nizhnekamsk Industrial Area, 423570. Republic of Tatarstan. Russia.

³ Nizhnekamsk Chemical Technology institut. Stroiteley St., 47. Nizhnekamsk, 423570. Republic of Tatarstan. Russia. E-mail: dorozhkinvp@mail.ru ⁴JSC "Scientific and Technological Center" Kama". Nizhnekamsk Industrial Area, 423570. Republic of Tatarstan. Russia. E-mail: ntc.nkama@mail.ru

*Supervising author; *Corresponding author

Keywords: structure of the tread rubber compound and vulcanizate, transmission electron microscopy, dynamic mechanical analysis, stress relaxation.

Abstract

Using a penetrating electron microscope we discovered a three-tier structure of silica in the tread rubber composition. It is established that in case of joint use of silicon and carbon black, the surface of carbon black particles is covered with a layer of particles of silicon dioxide of primary structure. There was estimated the effective activation energy of structural processes occurring in the tread rubber with different ratio of carbon: silica at different amplitudes of shear deformation. Using the method of tension relaxation there were revealed the structural features of the tread rubber containing only carbon black or only silica dioxide.