Full Paper	Thematic Section: Thermodynamic Research.
Reference Object Identifier – ROI: jbc-02/15-44-12-146	Subsection: Technology of Inorganic Substances.

Publication is available for discussion in the framework of the on-line Internet conference "Butlerov readings".

http://butlerov.com/readings/ (English Preprint)

Contributed: November 27, 2015.

Thermodynamic modeling of phase formation during the oxidation of niobium aluminide

© Alena G. Upolovnikova, Vladimir M. Chumarev, and Lydmila Y. Udoeva

Laboratory of Pyrometallurgy of Non-Ferrous Metals. Institute of Metallurgy of the UB of the RAS. Amundsen St., 101. Yekaterinburg, 620016. Sverdlovsk Region. Russia.

Phone: +7 (343) 232-90-24. E-mail: tyushnyakov.sn@gmail.com

Keywords: thermodynamic modeling, niobium, aluminum, sodium and calcium salts, alloys, oxidation.

Abstract

The results of thermodynamic modeling of oxidation Nb-Al alloy representing intermetallide – NbAl₃ by minimizing of the thermodynamic potential using the software package Chemistry HSC 5.1 (Outokumpy). Chemical transformations in the systems NbAl₃ – CaO₂, NbAl₃ – NaNO₃ and NbAl₃ – Na₂CO₃, NbAl₃ – CaCO₃ in the temperature range 25-1000 $^{\circ}$ C have been considered. Thermodynamic modeling results indicate the possibility of complete oxidation NbAl₃ using sodium oxide and calcium compounds in air, thus formed niobates and sodium aluminate (calcium). The most suitable oxidation sublimates activator is sodium carbonate by reacting with oxide NbAl₃ intermetallic compounds of Na and Ca in air. Sodium nitrate has the same properties, but its use requires special precautions. Complex calcium alumino-niobates is formed by the reaction NbAl₃ with CaCO₃ and CaO₂, impeding the separation of niobium and aluminum by leaching.

^{*}Supervising author; *Corresponding author