Reference Object Identifier – ROI: jbc-02/16-47-7-26

Subsection: Electrochemistry.

Publication is available for discussion in the framework of the on-line Internet conference "*Butlerov readings*". http://butlerov.com/readings/

Submitted on August 25, 2016.

Synthesis and magnetic properties of ytterbium ferrite YbFe₂O_{4±8}

© Alexander M. Yankin, Larisa B. Vedmid, Vladislav M. Kozin, Olga M. Fyodorova, and Sergey A. Uporov

Institute of Metallurgy of Ural Branch of Russian Academy of Science. Amundsen St., 101. Yekaterinburg, 620016. Russia. Phone: +7 (343) 232-90-73. E-mail: elarisa100@mail.ru

Keyword: dynamic method of synthesis, heterogeneous equilibria, oxygen non-stoichiometry, magnetic characteristics.

Abstract

A new method is applied to synthesize YbFe₂O_{4± δ}. It proposes using a gaseous mixture, which consists of a noble gas and oxygen, and partial oxygen pressure is regulated and upheld by an electrochemical method. It has been obtained that YbFe₂O_{4± δ} exists within the partial oxygen pressure interval of lgPo₂ = 10^{-16.2}-10⁻¹⁸ atm at 1090 °C. A correlation has been obtained between magnetic anomaly temperatures denotes essential changes taking place in magnetic sub-lattice of the ferrite.

References

- [1] N. Kimizuka and T. Katsura. The standard free energy of formation of YbFe₂O₄, Yb₂Fe₃O₇, YbFeO₃ and Yb₃Fe₅O₁₂ at 1200 °C. *J. Solid State Chem.* **1975**. Vol.15. P.151-157.
- [2] J. Kim and B.W. Lee. Magnetic properties of TmFe₂O₄. J. of Magnetics. **2010**. Vol.15(1). P.29-31.
- [3] A.G. Gamzatov, V.M. Aliev, M.N. Markelova et al. Magnetic and magnetocaloric properties of multiferroics LuFe_{2-x}Mn_xO_{4+δ}. *PhSS*. **2016**. Vol.58. Iss.6. P.1107-1111. (russian)
- [4] M. Kishi, S. Miura, Y. Nakagawa, et al. Magnetization of YbFe₂O_{4+x}. *J. Phys. Soc. Jpn.* **1982**. Vol.51. No.9. P.2801-2805.
- [5] L. Hailey. Williamson Magnetic and Charge Order in LuFe₂O₄ and YbFe₂O₄ Multiferroics. Masters by Research 25 January **2012**.
- [6] A.P. Pyatakov and A.K. Zvezdin. Magnetoelectric and multiferroic media. *Physic Uspekhi*. **2012**. Vol.55. P.557-581.
- [7] A.M. Yankin, L.B. Vedmid'. *Patent* No 2548949. A way to form a gaseous mixture for analysis and treatment of materials under variable partial oxygen pressure. Inquiry No 2013152527, Registred in the State Register of Inventions of the Russian Federation on the 25th of March **2015**. (russian)
- [8] A.M. Yankin, V.F. Balakirev, L.B. Vedmid'. Fyodorova O.M. Static method for investigation of heterogeneous eqilibria. *JPhCh.* **2003**. Vol.77. 3.11. P.2108-211. (russian)
- [9] L.B. Vedmid', A.M. Yankin, V.M. Kozin et al. Study of the crystal chemical-physical consequences in LaMnO₃₊₈. *Butlerov Communication*. **2015**. Vol.43. No.8. P.66-70. ROI: jbc-02/15-43-8-66
- [10] J. Iida, M. Tanaka, H. Kito, and J. Akimitsu. Successive Phase Transitions in Nearly Stoichiometric ErFe₂O₄. *J. Phys. Soc. Jpn.* **1990**. Vol.59. P.4190.
- [11] J. Iida, M. Tanaka, Y. Nakagawa, S. Funahashi, N. Kimizuka, and S. Takekawa. Magnetization and Spin Correlation of Two-Dimensional Triangular Antiferromagnet LuFe₂O₄. *J. Phys. Soc. Jpn.* **1993**. Vol.62. P.1723.
- [12] S. Lafuerza et al. Electronic states of *R*Fe₂O₄ (*R* = Lu,Yb,Tm,Y) mixed-valence compounds determined by soft x-ray absorption spectroscopy and x-ray magnetic circular dichroism. *Physical Review B 90*. **2014**. 245137p.
- [13] K. Yoshii et al. Magnetic and dielectric properties of RFe₂O₄, RFeMO₄, and RGaCuO₄(R = Yb and Lu, M = Co and Cu). *Physical Review B* 76. **2007**. 245137p.
- [14] K. Yoshii, M. Mizumaki et al. Magnetic properties of single crystalline YbFe₂O₄. *Journal of Physics: Conference Series 428.* **2013**. 012032p.
- [15] J. Blasco, S. Lafuerza, J. Garcia, et al. Structural properties in RFe₂O₄ compounds (R = Tm, Yb, and Lu). *Physical Review B 90.* **2014**. 094119p.

26 © Butlerov Communications. 2016. Vol.47. No.7 Kazan. The Republic of Tatarstan. Ru	ıssia.
---	--------

^{*}Supervising author; *Corresponding author