Тематический раздел: Физико-химические исследования. **Полная исследовательская публикация** Подраздел: Электрохимия. Идентификатор ссылки на объект – ROI: jbc-01/16-48-10-119

Публикация доступна для обсуждения в рамках функционирования постоянно действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/

Определение восстановленного глутатиона методом инверсионной вольтамперометрии на анализаторе с вращающимся дисковым углеситалловым электродом

© Лялина 1* Екатерина Игоревна, Фокина 1 Анна Ивановна, Ашихмина 1,2 Тамара Яковлевна и Мингазов 1 Муслим Абдульлатыфович

¹ Кафедра фундаментальной химии и методики обучения химии. Институт химии и экологии. Вятский государственный университет. Ул. Московская, 36. Киров, 610000. Кировская область. Россия. Тел.: (8332) 20-85-24. E-mail: lyalina.ekaterina@inbox.ru
² Лаборатория биомониторинга. Институт биологии Коми НЦ УрО РАН. Ул. Коммунистическая, 28. Сыктывкар, 167982. Республика Коми. Россия. Тел.: (8212) 24-11-19. E-mail: ecolab2.gmail.com

*Ведущий направление; *Поддерживающий переписку

Ключевые слова: инверсионная вольтамперометрия, восстановленный глутатион, медь, углеситалловый электрод.

Аннотация

Адаптирована методика определения восстановленного глутатиона методом инверсионной вольтамперометрии для анализатора марки Экомесm-BA с вращающимся дисковым углеситалловым электродом. Подобраны условия проведения анализа: натрий-ацетатный буферный раствор (pH 3.8), диапазон потенциалов от 0 до -0.8 В, скорость развертки потенциала 0.05 В/с, потенциал накопления GSH 0 В, время накопления 60 с. Рекомендуется предварительное электрохимическое нанесение ртутной пленки на рабочую поверхность электрода из раствора азотнокислой ртути(II). Диапазон измеряемых концентраций GSH составил от $3 \cdot 10^{-6}$ до $3 \cdot 10^{-4}$ моль/дм 3 и подтвержден методом «введено-найдено». Методика позволяет определять глутатион в растворах, содержащих ионы меди(II). Ионы Cu^{2+} и Hg^{2+} мешают определению GSH, в их присутствии аналитический сигнал глутатиона на вольтамперограмме усиливается. Изучена возможность маскировки и удаления ионов Cu^{2+} несколькими путями: связывание иона металла непосредственно в реакционной среде различными комплексообра-зователями (пирофосфаты, тиосульфаты, сегнетова соль, трилон Б, лимонная кислота); предварительное удаление иона металла в ходе пропускания исследуемого медьсодержащего раствора глутатиона через катионообменную смолу (катионит КУ-1, содержащий сульфогруппу SO_3H и фенольный гидроксил OH).

Использование пирофосфата натрия, тиосульфата натрия, лимонной кислоты позволяет снизить активную концентрацию меди. Максимальное снижение концентрации Cu^{2+} происходит с помощью введения добавки сегнетовой соли, лимонной кислоты и трилона Б (концентрация уменьшается в среднем на 70-80% от внесенного количества Cu^{2+} 3.6· 10^{-6} моль/дм³). При анализе смеси GSH+ Cu^{2+} в присутствии трилона Б на вольтамперограммах исчезает второй пик, но получить воспроизводимые результаты не удается. Оптимальным вариантом реализации методики является удаление ионов металла за счет пропускания исследуемого раствора через колонку, заполненную катионообменной смолой КУ-1 (толщина слоя 10 см, диаметр 1.5 см, скорость пропускания 3 см³/мин). Правильность результатов анализа доказана с помощью метода «введено-найдено».