Full Paper

The Reference Object Identifier - ROI: jbc-01/20-63-9-76 The Digital Object Identifier - DOI: 10.37952/ROI-jbc-01/20-63-9-76 Submitted on September 21, 2020.

Determination of glyphosate in honey by high-performance liquid chromatography

© Konstantin Ye. Burkin,*+ Mikhail Ye. Zhilkin, Alena Yu. Likhacheva, Maria V. Balymova, Elvira R. Rakhmetova, Aigul G. Mukhammetshina, and Igor M. Fitsev

FSBSI «Federal Center for Toxicological, Radiation and Biological Safety » (FSBSI «FCTRBS-RRVI»). Nauchny Gorodok-2. Kazan. 420075. Republic of Tatarstan. Russia. E-mail: konstantinburkin@yandex.ru

*Supervising author; +Corresponding author

Keywords: glyphosate, herbicide, honey, sample preparation, extraction, derivatization, 9-fluorenylmethyloxycarbonyl chloride, high-performance liquid chromatography, fluorescent detector.

Abstract

The article presents the results of the developed highly sensitive and easily implemented method of sample preparation and determination of the content of residual amounts of glyphosate – one of the most widely used non-selective herbicides of systemic action for the destruction of weeds, in flower honey samples by high-performance liquid chromatography (HPLC) with a fluorescent detector (FD) in the framework of ensuring the safety of beekeeping products.

The HPLC stage with FD was preceded by sample preparation, which included the following steps: extraction of glyphosate from an artificially contaminated honey sample with a mixture of water/methanol (1:1) with subsequent addition of a four-fold excess of acetonitrile to the resulting solution to separate a complex multicomponent matrix of honey by centrifugation; filtration of the supernatant and evaporation of the filtrate on a rotary evaporator; dissolution of the resulting residue in a borate buffer solution in order to achieve an alkaline pH value of the medium equal to 8.5-9.5; pre-column derivatization of glyphosate in an alkaline medium with an acetonitrile solution of FMOC-Cl for 30 minutes to obtain a fluorescent herbicide derivative – N-alpha-(9-fluorenylmethyloxycarbonyl)-N-alpha-(phosphonomethyl)-glycine; adding at the end of the derivatization process to the reaction mixture of formic acid in order to transition from alkaline to acidic conditions and stabilize the glyphosate derivative; adding dichloromethane to remove the unreacted excess of the derivatizing agent.

Subsequent chromatographic analysis of the fluorescent derivative glyphosate was performed on a reverse-phase packed column "Luna 100 C18-2.5 μ ", characterized by versatility and stability in the range of pH values from 1.5 to 11.0, in the isocratic elution mode of mobile phase composition acetonitrile/an aqueous buffer solution of potassium phosphoric acid with a pH value equal to 4.5-5.5 (30:70).

The developed method was successfully tested on real samples of flower honey.

References

- [1] N.N. Melnikov. Pesticides. Chemistry, technology and application. *Moscow: Chemistry*. 1987. 712p. (russian)
- [2] P.C. Bardalaye, W.B. Weller, H.A. Moye, E. Grossbard, D. Atkinson, Eds. The herbicide Glyphosate. Butterworths: London. 1985. 263p.
- [3] A.L. Valle, F.C. Mello, R.P. Alves Balvedi, L.P. Rodrigues, L.R. Goulart. Glyphosate detection: methods, needs and challenges. Environmental Chemistry Letters. 2019. Vol.17. P.291-317.
- [4] Lucia Pareja, Florencia Jesus, Horacio Heinzen, Marija Dolores Hernando, Łukasz Rajski, Amadeo R. Fernandez-Alba. Evaluation of glyphosate and AMPA in honey by water extraction followed by ion chromatography mass spectrometry. A pilot monitoring study. The Royal Society of Chemistry. 2019.
- [5] E.M. Kuznetsova, A.P. Grinko, V.D. Chmil. Methods for determining glyphosate in agricultural and food raw materials and food products. Nutritional problem. 2008. No.3-4. P.55-68. (russian)
- [6] E.M. Kuznetsova, V.D. Chmil. Glyphosate: behavior in the environment and levels of residues. Modern problems of toxicology. 2010. No.1. P.87-95. (russian)
- [7] Instructions on measures to prevent and eliminate diseases, poisoning and major pests of bees: approved. Ministry of agriculture and food of the Russian Federation 17.08.1998. Moscow. 1998. 6p. (russian)

DETERMINATION OF GLYPHOSATE IN HONEY BY HIGH-PERFORMANCE LIOUID CHROMATOGRAPHY 76-82

- [8] L.A. Osintseva. Ecology of the honey bee, Apismellifera L. (influence of pesticides and other anthropogenic factors): Textbook. Novosibirsk state agrarian University. Novosibirsk. 1999. 42p. (russian)
- [9] K.E. Burkin, D.V. Aleev, A.Z. Muharlyamova, E.R. Rakhmetova. Finding methods of sample preparation for determining herbicide in honey. Current issues of improving the technology of production and processing of agricultural products: Mosolov readings: Materials of the international scientific and practical conference. Mari state University. Yoshkar-Ola. 2020. Vol.XXII. P.456-459. (russian)
- [10] I.V. Lepeshkin, V.I. Medvedev, E.N. bagatskaya, A.P. Grinko, E.M. Kuznetsova. Toxicological and hygienic assessment of residual amounts of glyphosate in agricultural products. Environment & Health. 2013. No.4. P.45-49. (russian)
- [11] Guidelines for determining the residual amounts of glyphosate in grain and soybean oil, seeds and sunflower oil by high-performance liquid chromatography. Guidelines 4.1.1978-05. Nazarova T. A. [et al.]. Moscow. 2005. 16p (russian)
- [12] Determination of residual amounts of glyphosate in seeds and rapeseed oil by high-performance liquid chromatography: Guidelines 4.1.2550-09. Moscow: Federal center for hygiene and epidemiology of Rospotrebnadzor. 2009. 19p. (russian)
- [13] V.E. Olivo [et al.]. Rapid method for determination of glyphosate in groundwater using high performance liquid chromatography and solid-phase extraction after derivatization. Ambiente & Agua -An Interdisciplinary Journal of Applied Science. 2015. Vol.10. No.2. P.286-297.
- [14] H.A. Moye, A.J.Jr. Boning. Versatile Fluorogenic Labelling Reagent for Primary and Secondary Amines: 9- Fluorenylmethyl Chloroformate. Analytical Letters. 1979. Vol.12. Iss.1. P.25-35.
- [15] S. Ehling, T.M. Reddy. Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2015. Vol.63. Vol.48. P.10562-10568.