Subsection: Physiology and Biochemistry of Plants. The Reference Object Identifier – ROI: jbc-01/20-64-12-45

The Digital Object Identifier – DOI: 10.37952/ROI-jbc-01/20-64-12-45

Submitted on Desember 19, 2020.

Investigation of the quality of seeds of Anethum graveolens varieties Gribovsky and Lesnogorodsky by method of thermal analysis

© Elena V. Zueva, 1** Sergey L. Belopukhov, 2 and Ravil F. Baybekov 3

^{1,2} Department of Chemistry; ³ Department of Soil Science, Geology and Landscape Science. Russian State Agrarian University – Moscow Agricultural Academy Named after K.A. Timiryazev. Timiryazevskaya St., 49. Moscow, 127434. Russia. Phone: +7 (499) 976-16-28. E-mail: SBelopuhov@rgau-msha.ru

*Supervising author; *Corresponding author

Keywords: dill, *Anethum graveolens* L, chemical composition, differential thermal analysis, nicosulfuron, activation energy.

Abstract

The paper presents data on the study of the chemical composition of dill (Anethum graveolens L) using foliar treatment of vegetative plants with the growth-regulating agent Nicosulfuron [2-(4,6-dimethoxypyrimidin-2ylcarbomoyl-sulfamoyl) -N,N-dimethylnicotinamide]. Field experiments were carried out at the agrobiological station of the Humanitarian and Technological University of the city of Orekhovo-Zuevo, Moscow Region in 2016-2018. The soil of the experimental plots is sod-podzolic medium loamy. Plants were treated with a solution of Nicosulfuron with a concentration of 0.1 g/l according to the active substance. It was found that foliar treatment of vegetative plants with a solution of 2-(4,6-dimethoxypyrimidin-2-ylcarbomoyl-sulfamoyl)-N,N-dimethylnicotinamide led to a change in the concentrations of macrocomponents in the seeds of dill varieties Gribovsky and Lesnogorodsky. Differential thermal analysis of DTA) of dill seeds was carried out using a thermoanalytical complex based on a derivatograph. The sample heating rate in a platinum crucible was 5, 10, and 20 degrees per minute. The DTA method showed a significant difference in the component composition of the organic matter of seeds of both varieties, 6 organic components can be grouped into two groups – with thermal decomposition temperatures of 200-400 °C and 400-600 °C. The treatment with Nicosulfuron leads to a shift in the accumulation of synthesized spare components of seeds towards easily degradable (up to 400 °C) components. This treatment effect is manifested in the fact that in the total mass of organic components of dill seeds (at the level of 87%), the fraction of readily decomposable organic matter is 64-70% for both varieties. In the control variant, without treatment with the drug, the biosynthesis of hardly degradable components, probably having a high molecular weight, and for high-molecular compounds having a high degree of polymerization, occurs. At the same time, the total activation energy for organic compounds in the control is 30-40% higher compared to the samples that were treated with Nicosulfuron.

References

- [1] L.I. Shashilova. World diversity of dill and its breeding value. *Leningrad: Agropromizdat.* **1999**. 127p. (russian)
- [2] M.M. Tsiunel. Morphological features of the leaf blade and the variety of dill morphotypes. *Vegetables of Russia.* **2019**. No.6(50). P.31-35. (russian)
- [3] A. Yili, H.A. Aisa, V.V. Maksimov, O.N. Veshkurova, S.I. Salikhov. Chemical composition and antimicrobial activity of essential oil from seeds of Anethum graveolens growing in Uzbekistan. *Chemistry of Natural Compounds.* **2009**. Vol.45. No.2. P.280-281
- [4] A.V. Borisova, N.V. Makarova. Antioxidant activity in vitro of spices used in human nutrition. *Nutrition issues.* **2016**. P.120-125. (russian)
- [5] Y. Chen, H. Zeng, J. Tian, X. Ban, B. Ma, Y. Wang. Antifungal mechanism of essential oil from Anethum graveolens seeds against Candida albicans. *Journal of Medical Microbiology.* **2013**. Vol.62. No.8. P.1175-1183.
- [6] Ye.V. Zuyeva, S.L. Belopukhov. Comparative analysis of biologized and intensive agricultural technologies on the example of dill (Anethum graveolens). *Bulletin of the Chuvash State Agricultural Academy*. **2019**. No2(9). P.16-20. (russian)
- [7] I.N. Semenova, G.SH. Singizova, A.B. Zulkaranayev, G.SH. Il'bulova. The influence of copper and lead on the growth and development of plants on the example of Anethum graveolens L. *Modern problems of science and education.* **2015**. No.3. P.588. (russian)

Kazan. The Republic of Tatarstan. Russia.	© Butlerov Communications. 2020. Vol.64. No.12.	45

- [8] O.G. Kulikova, D.I. Mal'tsev, A.P. Il'ina, A.V. Burdina, V.P. Yamskova, I.A. Yamskov. Biologically active peptides isolated from odorous dill Anethum graveolens L. *Applied Biochemistry and Microbiology.* **2015**. Vol.51. No.3. P.348. (russian)
- [9] H. Hosseinzadeh, G.R. Karimi, M. Ameri. Effects of Anethum graveolens L. seed extracts on experimental gastric irritation models in mice. *BMC Pharmacol.* **2002**. No.2. P.21.
- [10] N. Takahashi, L. Yao, M. Kim, H. Sasako, M. Aoyagi, J. Shono, N. Tsuge, T. Goto, T. Kawada. Dill seed extract improves abnormalities in lipid metabolism through peroxisome proliferator-activated receptor-α (PPARα) activation in diabetic obese mice. *Mol. Nutr. Food Res.* **2013**. Vol.57. No.7. P.1295-1299.
- [11] M.D. Dimov, K.Z. Dobreva, A.S. Stoyanova. Chemical composition of the dill essential oils (Anethum graveolens L.) from Bulgaria. *Bulgarian Chemical Communications*. **2019**. Vol.51. No.1. P.214-216.
- [12] M. Madandoust, M. Fooladchang. Effect of nitrogen fertilizer on essential oil content and its compositions in Anethum graveolens L. *Journal of Essential Oil-Bearing Plants*. **2018**. Vol.21. No.5. P.1266-1271.
- [13] E.V. Zuyeva, R.F. Baybekov, S.L. Belopukhov, KH.V. Sharafutdinov. The effect of nicosulfuron on the change in the ratio of vitamins in dill (*Anethum graveolens* L.). *Agriculture*. **2020**. No.5. P.34-37. (russian)
- [14] S.L. Belopukhov, E.A. Grishina, I.I. Dmitrevskaya, V.M. Lukomets, I.V. Uschapovsky. Effect of humic-fulvic complex on flax fiber and seed yield characteristics. *News of the TSHA*. 2015. No.4. P.71-81. (russian)
- [15] S.L. Belopukhov, I.I. Dmitrevskaya, O.V. Yeliseyeva, A.V. Zhevnerov. Instrumental methods of research of agrosphere objects: textbook. *Moscow*: Prospect. **2019**. 160p. (russian)
- [16] U. Uendlandt. Thermal methods of analysis. Trans. from English. edited by V.A. Stepanova, V.A. Bershtevna. *Moscow: Mir Publishing House.* **1998**. 526p. (russian)
- [17] S.L. Belopukhov, R.F. Baybekov, V.A. Serkov, O.A. Zharkikh, I.I. Dmitrevskaya. Application of the method of thermal analysis to assess the quality indicators of hemp fiber when using protective and stimulating complexes in agricultural technologies. *AgroEcoInfo.* **2019**. No.4(38). P.38. (russian)
- [18] S.L. Belopukhov, I.G. Rekus, L.YU. Komarova, D.G. Demidov, A.L. Kaufman. Application of thermal analysis for expert evaluation of different types of paper. *Proceedings of the Tula State University*. *Technical sciences.* **2019**. No.12. P.263-268.
- [19] A.A. Akhmetova, S.L. Belopukhov. Application of the method of thermal analysis for the study of chicken eggs. *Butlerov Communications*. **2014**. T.39. №10. C.83-88. ROI-jbc-01/14-39-10-83 (russian)